时间有着哪些相对性?时间的相对性怎么理解相对性绝对性


相对性 绝对性

还在学生时代,爱因斯坦就在思考这样一个令人困惑的问题:假如他以光的速度穿过以太旅行,他将看到一些什么呢?按照运动的相对性原理,这时光束应该相当于静止空间中振荡的电磁场,但这种观点同麦克斯韦理论不符。于是爱因斯坦开始猜想,力学定律以及包括光的传播在内的其他物理学定律,对于以不同速度运动的观测者必然具有相同的形式。他认为,相对性原理不仅能应用于力学现象,而且同样也能应用于光学和电磁学现象。光速不但对于相对静止的观测者是相同的,对于那些处于相对匀速运动中的观测者也是相同的。迈克耳逊-莫雷实验的零结果是“正确的”,因为:第一,不存在以太;第二,光速不变。

爱因斯坦接着便以这两条结论为前提,推广了伽利略的相对性原理,建立了自己的、更加普遍的新理论——狭义相对论。所谓“狭义”,指它仅限于匀速运动的场合。

狭义相对论指出,不管是力学现象,还是光学和电磁学现象,它们所遵循的规律都与惯性系的运动状态无关。

这样,爱因斯坦就完满地解决了麦克斯韦的电磁波理论和建立在牛顿力学定律基础上的物理学其他部分之间的矛盾,从而开创了物理学的一个新时代。

狭义相对论发表于1905年,论文的题目叫“论动体的电动力学”。从这篇文章我们看到,爱因斯坦是通过分析时间概念来解决问题的,也是在“同时性的相对性”这个问题上取得突破的。他醒悟到时间的可疑,认为时间不能绝对定义,并且指出,对于肘间的测量决定于人们对“同时性”的认识。也就是说,对时间间隔的测量必然涉及对同时性的判断,即一个事件和另一个事件在时间上的吻合。他在“论动体的电动力学”一文中对这一点有一段精彩的表述:

“如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得‘时间’在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,‘那列火车7点钟到达这里’,这大概是说:‘我的表的短针指到7同火车的到达是同时的事件。’”

可能有人认为,用“我的表的短针的位置”来代替“时间”,也许就有可能克服由于定义“时间”而带来的一切困难。事实上,如果问题只是在于为这只表所在的地点来定义一种时间,那么这样一种定义就已经足够了。但是,如果问题是要把发生在不同地点的一系列事件在时间上联系起来,或者说——其结果依然一样——要定出那些在远离这只表的地点所发生的事件的时间,那么这样的定义就不够了。

爱因斯坦认识到,时间与信号速度之间有不可分的联系,不同距离处的两事件的同时性,与事件的相对位置以及观测者借以感知它们的联系方式有关。如果事件的距离和把它与观测者联系起来的信号的速度是已知的,观测者便可计算出该事件发生的时间,并把它和自己先前经历过的某一时刻对应起来。这种计算对于不同的观测者是不同的。但是,在爱因斯坦提出这个问题以前,人们却一直信守这样一个原则:事件被感知的时间只取决于它发生的时间,它对于所有的观测者都是一样的。爱因斯坦指出,上述原则基于这样一个前提,即如果所有观测者的计算都正确无误,他们对于同一给定事件应该得到相同的时间。然而,爱因斯坦令人信服地证明,这一前提一般并不成立。他发现,处于匀速相对运动中的不同观测者,对于同一事件一般总会测出不同的时间。如果两只时钟相互之间处于匀速相对运动之中,则它们将保持不同的时间,你无法说哪个钟是“准”的。运动的时钟总比相对静止的时钟要变慢。对于我们日常遇到的运动速度,这一效应可以忽略,但当时钟运动的速度愈接近光速,时钟变慢的效应就愈益显著。

为了进一步说明这个问题,让我们来做一个“思想实验”。这是不必在实验室进行,而只是通过头脑去想象的“实验”,它也是科学实验的一种形式,并且颇得物理学家们的宠爱。事实上,就连中学生在做物理课习题时也常常用到它。

这个实验是这样的:

假定在首都机场的卫星楼里有两只质量相同的时钟A和B,经过校准同步后,让A钟留在卫星楼里,而把B钟装上飞机。当飞机由北京飞经上海再返回首都机场时,把钟B和钟A相比较,这时它们的指针所指示的时间会相同吗?

有些读者可能会脱口而出:相同。但事实并非如此。如果这两个时钟足够精密的话,我们将会发现钟B要比钟A慢一些。

这就是爱因斯坦相对论所预言的“时钟矛盾”。这里所说的矛盾,不是逻辑意义上的矛盾,而是指与常识相反的考虑方法,即所谓“佯谬”。

按照狭义相对论,两只同步了的时钟,其中一只以速度V沿十条闭合曲线运动,经历一秒后回到原处,那么它比那只始终未动的钟要慢(V/c)2,此处c为光速。由此可以推出:对于同一经历过程,飞机上钟B测定的时间间隔为△τ,卫星楼里不动的钟4测得的为△t,于是

因为任何物体(这里是飞机)的运动速度不会超过光速,√1-(V/c)2的值始终小于1,所以相对于A钟来说,钟B变慢了。钟A走过1秒时,钟B只经过秒。

通常情况下,V/c值远远小于1,近似等于1,时钟变慢的程度微乎其微。但是,如果我们能够发射一个宇宙飞船,使它相对于地球以光速的0.98倍的速度飞行,在地面上的人看来,飞船内时钟走速将只有地面上时钟走速的1/5。在这种情况下,假如我们让25岁和28岁的亲兄弟中的哥哥乘飞船作5年飞行,那么当他回到地面上时,弟弟将会发现他比哥哥大了1岁。因为这5年是指地面上的5年,弟弟的年龄已经30岁了。可是在这段时间里,飞船内的时钟只走过1年,哥哥只长了1岁,只有29岁。有些物理书上又把这种现象称为“双生儿佯谬”。

相对论预言的这种奇妙现象,长期以来一直是物理学家热烈讨论的话题。可是,一直到原子钟问世之后,才有可能对它作出肯定性的实验验证。

1971年,美国海军天文台把4台铯原子钟装上飞机从华盛顿出发,分别向东和向西作环球飞行。结果发现,向东飞行的铯钟与停放在该天文台的铯钟之间读数相差刃毫微秒;向西飞行时,这一差值为273微秒。虽然在这次试验中没有扣除地球引力所造成的影响,但测量结果表明,“双生儿佯谬”是确实存在的。


时间的相对性是什么?

还在学生时代,爱因斯坦就在思考这样一个令人困惑的问题:假如他以光的速度穿过以太旅行,他将看到一些什么。按照运动的相对性原理,这时光束应该相当于静止空间中振荡的电磁场,但这种观点同麦克斯韦理论不符。于是爱因斯坦开始猜想,力学定律以及包括光的传播在内的其他物理学定律,对于以不同速度运动的观测者必然具有相同的形式。他认为,相对性原理不仅能应用于力学现象,而且同样也能应用于光学和电磁学现象。光速不但对于相对静止的观测者是相同的,对于那些处于相对匀速运动中的观测者也是相同的。迈克耳逊-莫雷实验的零结果是“正确的”,因为:第一,不存在以太;第二,光速不变。

爱因斯坦接着便以这两条结论为前提,推广了伽利略的相对性原理,建立了自己的、更加普遍的新理论——狭义相对论。所谓“狭义”,指它仅限于匀速运动的场合。

狭义相对论指出,不管是力学现象,还是光学和电磁学现象,它们所遵循的规律都与惯性系的运动状态无关。

这样,爱因斯坦就完满地解决了麦克斯韦的电磁波理论和建立在牛顿力学定律基础上的物理学其他部分之间的矛盾,从而开创了物理学的一个新时代。

狭义相对论发表于1905年,论文的题目叫“论动体的电动力学”。从这篇文章我们看到,爱因斯坦是通过分析时间概念来解决问题的,也是在“同时性的相对性”这个问题上取得突破的。他醒悟到时间的可疑,认为时间不能绝对定义,并且指出,对于肘间的测量决定于人们对“同时性”的认识。也就是说,对时间间隔的测量必然涉及对同时性的判断,即一个事件和另一个事件在时间上的吻合。他在“论动体的电动力学”一文中对这一点有一段精彩的表述:

“如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得‘时间’在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,‘那列火车7点钟到达这里’,这大概是说:‘我的表的短针指到7同火车的到达是同时的事件。’”

可能有人认为,用“我的表的短针的位置”来代替“时间”,也许就有可能克服由于定义“时间”而带来的一切困难。事实上,如果问题只是在于为这只表所在的地点来定义一种时间,那么这样一种定义就已经足够了。但是,如果问题是要把发生在不同地点的一系列事件在时间上联系起来,或者说——其结果依然一样——要定出那些在远离这只表的地点所发生的事件的时间,那么这样的定义就不够了。

爱因斯坦认识到,时间与信号速度之间有不可分的联系,不同距离处的两事件的同时性,与事件的相对位置以及观测者借以感知它们的联系方式有关。如果事件的距离和把它与观测者联系起来的信号的速度是已知的,观测者便可计算出该事件发生的时间,并把它和自己先前经历过的某一时刻对应起来。这种计算对于不同的观测者是不同的。但是,在爱因斯坦提出这个问题以前,人们却一直信守这样一个原则:事件被感知的时间只取决于它发生的时间,它对于所有的观测者都是一样的。爱因斯坦指出,上述原则基于这样一个前提,即如果所有观测者的计算都正确无误,他们对于同一给定事件应该得到相同的时间。然而,爱因斯坦令人信服地证明,这一前提一般并不成立。他发现,处于匀速相对运动中的不同观测者,对于同一事件一般总会测出不同的时间。如果两只时钟相互之间处于匀速相对运动之中,则它们将保持不同的时间,你无法说哪个钟是“准”的。运动的时钟总比相对静止的时钟要变慢。对于我们日常遇到的运动速度,这一效应可以忽略,但当时钟运动的速度愈接近光速,时钟变慢的效应就愈益显著。

为了进一步说明这个问题,让我们来做一个“思想实验”。这是不必在实验室进行,而只是通过头脑去想象的“实验”,它也是科学实验的一种形式,并且颇得物理学家们的宠爱。事实上,就连中学生在做物理课习题时也常常用到它。

相对论预言的这种奇妙现象,长期以来一直是物理学家热烈讨论的话题。可是,一直到原子钟问世之后,才有可能对它作出肯定性的实验验证。

时间的相对性怎么理解
爱因斯坦说时间和空间是人们认知的一种错觉。
 时间是指宏观一切具有不停止的持续性和不可逆性的物质状态的各种变化过程,其有共同性质的连续事件的度量衡的总称。
  时是对物质运动过程的描述,间是指人为的划分。时间是思维对物质运动过程的分割、划分。
物理学意义上的“时间”:是事件发生到结束的时刻间隔。
(讲“时间”是不恰当的,应称为“时刻”)什么是时间?
时间的本质在于:它是事件先后顺序或者持续性的量度。t=T(U,S,……)U-宇宙;S空间,XYZ,…….....事件,顺序时间不是自变量,而是因变量,它是随宇宙的变化而变化。t=(S1,S2,S3,...,Sn) 。
什么是因变量?
 就是:在函数关系式中,某特定的数会随一个(或几个)变动的数的变动而变动,就称为因变量。如:Y=f(X)。此式表示为:Y随X的变化而变化。Y是因变量,X是自变量。
所以说,时间这个“因变量”是相对于其他变量而言。此即所谓“时间的相对性”。
时间的相对性就是说时间在不同的空间是不同的。时间是具体的每一个事物相对于空间的一种物质性反应。如钟表在引力强度不同的地方走的快慢是不一样的。空间也是不对称的,可以用一个气球在不同空间的相对点而言,相对事而言,相对人而言。
标签: 理工学科